Open Access
2011 On the Complete Convergence for Negatively Associated Random Fields
Mi-Hwa Ko
Taiwanese J. Math. 15(1): 171-179 (2011). DOI: 10.11650/twjm/1500406168

Abstract

The aim of this note is to establish almost sure Marcinkiewicz-Zygmund type result for a field of negatively associated random variables indexed by $\mathbb{Z}_+^d$ ($d \geq 2$), the positive $d$-dimensional lattice points.

Citation

Download Citation

Mi-Hwa Ko. "On the Complete Convergence for Negatively Associated Random Fields." Taiwanese J. Math. 15 (1) 171 - 179, 2011. https://doi.org/10.11650/twjm/1500406168

Information

Published: 2011
First available in Project Euclid: 18 July 2017

zbMATH: 1228.60041
MathSciNet: MR2780278
Digital Object Identifier: 10.11650/twjm/1500406168

Subjects:
Primary: 60F15 , 60G09

Keywords: complete convergence , identically distributed , maximal moment inequality , Negatively associated , Random field

Rights: Copyright © 2011 The Mathematical Society of the Republic of China

Vol.15 • No. 1 • 2011
Back to Top