Open Access
2011 Maximal Regularity for Integral Equations in Banach Spaces
Shangquan Bu
Taiwanese J. Math. 15(1): 229-240 (2011). DOI: 10.11650/twjm/1500406172

Abstract

We study maximal regularity in periodic Besov spaces $B_{p,q}^s(\mathbb T, X)$ for the integral equations ($P$): $u(t) = A \int^{t}_{-\infty} a(t-s) u(s) ds) + B \int^{t}_{-\infty} b(t-s) u(s) ds + f(t)$ on $[0,2\pi]$ with periodic boundary condition $u(0) = u(2\pi)$, where $A$ and $B$ are closed operators in a Banach space $X$, $a, \ b \in L^1(\mathbb R_+)$ and $f$ is a given function defined on $[0,2\pi]$ with values in $X$. Under suitable assumptions on the kernels $a, \ b$ and the closed operators $A, \ B$, we completely characterize $B_{p,q}^s$-maximal regularity of ($P$).

Citation

Download Citation

Shangquan Bu. "Maximal Regularity for Integral Equations in Banach Spaces." Taiwanese J. Math. 15 (1) 229 - 240, 2011. https://doi.org/10.11650/twjm/1500406172

Information

Published: 2011
First available in Project Euclid: 18 July 2017

zbMATH: 1245.45009
MathSciNet: MR2780282
Digital Object Identifier: 10.11650/twjm/1500406172

Subjects:
Primary: 45N05
Secondary: 43A15 , 45D05 , 47D99

Keywords: Besov spaces , Fourier multiplier , integral equation , maximal regularity

Rights: Copyright © 2011 The Mathematical Society of the Republic of China

Vol.15 • No. 1 • 2011
Back to Top