Open Access
2010 ORDER PRESERVING BIJECTIONS OF C+(X)
Janko Marovt
Taiwanese J. Math. 14(2): 667-673 (2010). DOI: 10.11650/twjm/1500405812

Abstract

Let $X$ be a compact Hausdorff space which satisfies the first axiom of countability, and $C_+(X)$ the set of all continuous functions from $X$ to $[0,\infty)$. If $\varphi : C_{+}(X) \rightarrow C_{+}(X)$ is a bijective map which preserves the order in both directions, then there exists a homeomorphism $\omega : X \mathcal{\rightarrow } X$ and for each $x \in X$ a bijective, increasing map $m_{x} : [0,\infty) \mathcal{\rightarrow } [0,\infty)$ such that $\varphi(f)(x) = m_{x}(f(\omega(x)))$, for all $x \in X$ and $f \in C_{+}(X)$.

Citation

Download Citation

Janko Marovt. "ORDER PRESERVING BIJECTIONS OF C+(X)." Taiwanese J. Math. 14 (2) 667 - 673, 2010. https://doi.org/10.11650/twjm/1500405812

Information

Published: 2010
First available in Project Euclid: 18 July 2017

zbMATH: 1223.46024
MathSciNet: MR2655792
Digital Object Identifier: 10.11650/twjm/1500405812

Subjects:
Primary: 46J10
Secondary: 46E05

Keywords: bijective map , preserver

Rights: Copyright © 2010 The Mathematical Society of the Republic of China

Vol.14 • No. 2 • 2010
Back to Top