Open Access
2010 FINITENESS RESULT FOR GENERALIZED LOCAL COHOMOLOGY MODULES
Abolfazl Tehranian
Taiwanese J. Math. 14(2): 447-451 (2010). DOI: 10.11650/twjm/1500405800

Abstract

Let $R$ be a Noetherian ring, let $M$ and $N$ be finitely generated modules and let $\mathfrak{a}$ and $\mathfrak{b}$ be ideals of $R$. Let $s$ be an integer such that $\mathfrak{b}_{\mathfrak{p}} \subseteq \sqrt{\mbox{Ann} \mbox{H}^i_{\mathfrak{a}_{\mathfrak{p}}}(M_{\mathfrak{p}} ,N_{\mathfrak{p}})}$ for all $i \le s$ and all prime ideal $\mathfrak{p}$ of $R$. Then we show the following statements hold:

(1) If $\mbox{H}^i_{\mathfrak{b}}(N) = 0$ for all $i \lt s$, then $\mbox{H}_{\mathfrak{a}}^{i}(M,N)$ is finitely generated for all $i \leq s$.

(2) $\mathfrak{b} \subseteq \sqrt{\mbox{Ann} \mbox{H}_{\mathfrak{a}}^{2}(M,N)}$.

These statements generalize the corresponding results which are shown in [6] and [1] for standard local cohomology module.

Citation

Download Citation

Abolfazl Tehranian. "FINITENESS RESULT FOR GENERALIZED LOCAL COHOMOLOGY MODULES." Taiwanese J. Math. 14 (2) 447 - 451, 2010. https://doi.org/10.11650/twjm/1500405800

Information

Published: 2010
First available in Project Euclid: 18 July 2017

zbMATH: 1198.13017
MathSciNet: MR2655780
Digital Object Identifier: 10.11650/twjm/1500405800

Subjects:
Primary: 13D45 , 13E99

Keywords: Artinian module , local cohomology , modules finite over a local homomorphism , secondary representation

Rights: Copyright © 2010 The Mathematical Society of the Republic of China

Vol.14 • No. 2 • 2010
Back to Top