Abstract
Let $R$ be a Noetherian ring, let $M$ and $N$ be finitely generated modules and let $\mathfrak{a}$ and $\mathfrak{b}$ be ideals of $R$. Let $s$ be an integer such that $\mathfrak{b}_{\mathfrak{p}} \subseteq \sqrt{\mbox{Ann} \mbox{H}^i_{\mathfrak{a}_{\mathfrak{p}}}(M_{\mathfrak{p}} ,N_{\mathfrak{p}})}$ for all $i \le s$ and all prime ideal $\mathfrak{p}$ of $R$. Then we show the following statements hold:
(1) If $\mbox{H}^i_{\mathfrak{b}}(N) = 0$ for all $i \lt s$, then $\mbox{H}_{\mathfrak{a}}^{i}(M,N)$ is finitely generated for all $i \leq s$.
(2) $\mathfrak{b} \subseteq \sqrt{\mbox{Ann} \mbox{H}_{\mathfrak{a}}^{2}(M,N)}$.
These statements generalize the corresponding results which are shown in [6] and [1] for standard local cohomology module.
Citation
Abolfazl Tehranian. "FINITENESS RESULT FOR GENERALIZED LOCAL COHOMOLOGY MODULES." Taiwanese J. Math. 14 (2) 447 - 451, 2010. https://doi.org/10.11650/twjm/1500405800
Information