Open Access
2010 CERTAIN CLASS OF CONTACT CR-SUBMANIFOLDS OF AN ODD-DIMENSIONAL UNIT SPHERE
Hyang Sook Kim, Jin Suk Pak
Taiwanese J. Math. 14(2): 629-646 (2010). DOI: 10.11650/twjm/1500405810

Abstract

In this paper we investigate $(n+1)(n \geq 5)$-dimensional contact $CR$-submanifolds $M$ of $(n-1)$ contact $CR$-dimension in a $(2m+1)$-dimensional unit sphere $S^{2m+1}$ which satisfy the condition $h(FX,Y) - h(X,FY) = g(FX,Y) \zeta$ for a normal vector field $\zeta$ to $M$, where $h$ and $F$ denote the second fundamental form and a skew-symmetric endomorphism (defined by (2.3)) acting on tangent space of $M$, respectively.

Citation

Download Citation

Hyang Sook Kim. Jin Suk Pak. "CERTAIN CLASS OF CONTACT CR-SUBMANIFOLDS OF AN ODD-DIMENSIONAL UNIT SPHERE." Taiwanese J. Math. 14 (2) 629 - 646, 2010. https://doi.org/10.11650/twjm/1500405810

Information

Published: 2010
First available in Project Euclid: 18 July 2017

zbMATH: 1202.53055
MathSciNet: MR2655790
Digital Object Identifier: 10.11650/twjm/1500405810

Subjects:
Primary: 53C25 , 53C40

Keywords: contact $CR$-submanifold , odd-dimensional unit sphere , Sasakian structure , second fundamental form

Rights: Copyright © 2010 The Mathematical Society of the Republic of China

Vol.14 • No. 2 • 2010
Back to Top