Open Access
1997 DERIVATIONS AND CENTRALIZING MAPPINGS IN PRIME RINGS
Tsiu-Kwen Lee
Taiwanese J. Math. 1(3): 333-342 (1997). DOI: 10.11650/twjm/1500405693

Abstract

Let $R$ be a prime ring with extended centroid $C$ and $\rho$ a nonzero right ideal of $R$. In this paper we investigate the derivations $\delta$, $d$ on $R$ such that $[\delta (x), d(x)] \in C$ for all $x \in \rho$. As an application, we prove that any centralizing additive mapping $f$ on $\rho$ must be of the form $f(x)=\lambda x+\mu (x)$ for all $x\in\rho$, where $\lambda \in C$ and $\mu : \rho\to C$, except when $[\rho, \rho ]\rho =0$.

Citation

Download Citation

Tsiu-Kwen Lee. "DERIVATIONS AND CENTRALIZING MAPPINGS IN PRIME RINGS." Taiwanese J. Math. 1 (3) 333 - 342, 1997. https://doi.org/10.11650/twjm/1500405693

Information

Published: 1997
First available in Project Euclid: 18 July 2017

zbMATH: 0885.16021
MathSciNet: MR1465935
Digital Object Identifier: 10.11650/twjm/1500405693

Subjects:
Primary: 16D15 , 16N60 , 16W25

Keywords: centralizing mapping , derivation‎ , GPI , PI , Prime ring , quotient ring

Rights: Copyright © 1997 The Mathematical Society of the Republic of China

Vol.1 • No. 3 • 1997
Back to Top