Open Access
2014 A two-dimensional, two-sided Euler inversion algorithm with computable error bounds and its financial applications
Ning Cai, Chao Shi
Stoch. Syst. 4(2): 404-448 (2014). DOI: 10.1214/12-SSY094

Abstract

In this paper we propose an inversion algorithm with computable error bounds for two-dimensional, two-sided Laplace transforms. The algorithm consists of two discretization parameters and two truncation parameters. Based on the computable error bounds, we can select these parameters appropriately to achieve any desired accuracy. Hence this algorithm is particularly useful to provide benchmarks. In many cases, the error bounds decay quickly (e.g., exponentially), making the algorithm very efficient. We apply this algorithm to price exotic options such as spread options and barrier options under various asset pricing models as well as to evaluate the joint cumulative distribution functions of related state variables. The numerical examples indicate that the inversion algorithm is accurate, fast and easy to implement.

Citation

Download Citation

Ning Cai. Chao Shi. "A two-dimensional, two-sided Euler inversion algorithm with computable error bounds and its financial applications." Stoch. Syst. 4 (2) 404 - 448, 2014. https://doi.org/10.1214/12-SSY094

Information

Published: 2014
First available in Project Euclid: 27 March 2015

zbMATH: 1310.44002
MathSciNet: MR3353223
Digital Object Identifier: 10.1214/12-SSY094

Subjects:
Primary: 44A10 , 91G20 , 91G60

Keywords: computable error bounds , discretization errors , Euler inversion , exotic options , option pricing , truncation errors , Two-dimensional Laplace inversion , two-sided Laplace transforms

Rights: Copyright © 2014 INFORMS Applied Probability Society

Vol.4 • No. 2 • 2014
Back to Top