Open Access
2013 Brownian inventory models with convex holding cost, Part 2: Discount-optimal controls
J. G. Dai, Dacheng Yao
Stoch. Syst. 3(2): 500-573 (2013). DOI: 10.1214/11-SSY046
Abstract

We consider an inventory system in which inventory level fluctuates as a Brownian motion in the absence of control. The inventory continuously accumulates cost at a rate that is a general convex function of the inventory level, which can be negative when there is a backlog. At any time, the inventory level can be adjusted by a positive or negative amount, which incurs a fixed positive cost and a proportional cost. The challenge is to find an adjustment policy that balances the inventory cost and adjustment cost to minimize the expected total discounted cost. We provide a tutorial on using a three-step lower-bound approach to solving the optimal control problem under a discounted cost criterion. In addition, we prove that a four-parameter control band policy is optimal among all feasible policies. A key step is the constructive proof of the existence of a unique solution to the free boundary problem. The proof leads naturally to an algorithm to compute the four parameters of the optimal control band policy.

References

1.

[1] Baccarin, S. (2002). Optimal impulse control for cash management with quadratic holding-penalty costs. Decisions in Economics and Finance 25 19–32. MR1961219[1] Baccarin, S. (2002). Optimal impulse control for cash management with quadratic holding-penalty costs. Decisions in Economics and Finance 25 19–32. MR1961219

2.

[2] Bensoussan, A. and Lions, J.-L. (1974/75). Nouvelles méthodes en contrôle impulsionnel. Applied Mathematics and Optimization 1 289–312. MR390886 10.1007/BF01447955[2] Bensoussan, A. and Lions, J.-L. (1974/75). Nouvelles méthodes en contrôle impulsionnel. Applied Mathematics and Optimization 1 289–312. MR390886 10.1007/BF01447955

3.

[3] Bensoussan, A. and Lions, J.-L. (1984). Impulse control and quasivariational inequalities. Gauthier-Villars, Montrouge. Translated from the French by J. M. Cole. MR756234[3] Bensoussan, A. and Lions, J.-L. (1984). Impulse control and quasivariational inequalities. Gauthier-Villars, Montrouge. Translated from the French by J. M. Cole. MR756234

4.

[4] Bertola, G. and Caballero, R. J. (1990). Kinked Adjustment Costs and Aggregate Dynamics. MIT Press, 237–296.[4] Bertola, G. and Caballero, R. J. (1990). Kinked Adjustment Costs and Aggregate Dynamics. MIT Press, 237–296.

5.

[5] Constantinides, G. M. and Richard, S. (1978). Existence of optimal simple policies for discounted-cost inventory and cash management in continous time. Operations Research 26 620–636. MR496558 10.1287/opre.26.4.620[5] Constantinides, G. M. and Richard, S. (1978). Existence of optimal simple policies for discounted-cost inventory and cash management in continous time. Operations Research 26 620–636. MR496558 10.1287/opre.26.4.620

6.

[6] Dai, J. G. and Yao, D. (2013). Brownian inventory models with convex holding cost, part 1: average-optimal controls. Stochastic Systems 3(2) 442–499.[6] Dai, J. G. and Yao, D. (2013). Brownian inventory models with convex holding cost, part 1: average-optimal controls. Stochastic Systems 3(2) 442–499.

7.

[7] Feng, H. and Muthuraman, K. (2010). A computational method for stochastic impulse control problems. Mathematics of Operations Research 35 830–850. MR2777517 10.1287/moor.1100.0466[7] Feng, H. and Muthuraman, K. (2010). A computational method for stochastic impulse control problems. Mathematics of Operations Research 35 830–850. MR2777517 10.1287/moor.1100.0466

8.

[8] Harrison, J. M., Sellke, T. M., and Taksar, M. I. (1983). Impulse control of Brownian motion. Mathematics of Operations Research 8 454–466. MR716124 10.1287/moor.8.3.454[8] Harrison, J. M., Sellke, T. M., and Taksar, M. I. (1983). Impulse control of Brownian motion. Mathematics of Operations Research 8 454–466. MR716124 10.1287/moor.8.3.454

9.

[9] Harrison, J. M. and Taksar, M. I. (1983). Instantaneous control of Brownian motion. Mathematics of Operations Research 8 439–453. MR716123 10.1287/moor.8.3.439[9] Harrison, J. M. and Taksar, M. I. (1983). Instantaneous control of Brownian motion. Mathematics of Operations Research 8 439–453. MR716123 10.1287/moor.8.3.439

10.

[10] Plehn-Dujowich, J. M. (2005). The optimality of a control band policy. Review of Economic Dyanmics 8 877–901.[10] Plehn-Dujowich, J. M. (2005). The optimality of a control band policy. Review of Economic Dyanmics 8 877–901.

11.

[11] Protter, P. E. (2005). Stochastic Integration and Differential Equations. Stochastic Modelling and Applied Probability, Vol. 21. Springer-Verlag, Berlin. Second edition. Version 2.1, Corrected third printing. MR2273672[11] Protter, P. E. (2005). Stochastic Integration and Differential Equations. Stochastic Modelling and Applied Probability, Vol. 21. Springer-Verlag, Berlin. Second edition. Version 2.1, Corrected third printing. MR2273672

12.

[12] Richard, S. F. (1977). Optimal impulse control of a diffusion process with both fixed and proportional costs of control. SIAM Journal on Control and Optimization 15 79–91. MR490377 10.1137/0315007[12] Richard, S. F. (1977). Optimal impulse control of a diffusion process with both fixed and proportional costs of control. SIAM Journal on Control and Optimization 15 79–91. MR490377 10.1137/0315007

13.

[13] Taksar, M. (1997). Infinite dimensional linear programming approach to singular stochastic control problems. SIAM Journal on Control and Optimization 35 604–625. MR1436641 10.1137/S036301299528685X[13] Taksar, M. (1997). Infinite dimensional linear programming approach to singular stochastic control problems. SIAM Journal on Control and Optimization 35 604–625. MR1436641 10.1137/S036301299528685X
Copyright © 2013 INFORMS Applied Probability Society
J. G. Dai and Dacheng Yao "Brownian inventory models with convex holding cost, Part 2: Discount-optimal controls," Stochastic Systems 3(2), 500-573, (2013). https://doi.org/10.1214/11-SSY046
Published: 2013
Vol.3 • No. 2 • 2013
Back to Top