Open Access
May 2022 Real-Time Estimation of COVID-19 Infections: Deconvolution and Sensor Fusion
Maria Jahja, Andrew Chin, Ryan J. Tibshirani
Author Affiliations +
Statist. Sci. 37(2): 207-228 (May 2022). DOI: 10.1214/22-STS856

Abstract

We propose, implement, and evaluate a method to estimate the daily number of new symptomatic COVID-19 infections, at the level of individual U.S. counties, by deconvolving daily reported COVID-19 case counts using an estimated symptom-onset-to-case-report delay distribution. Importantly, we focus on estimating infections in real-time (rather than retrospectively), which poses numerous challenges. To address these, we develop new methodology for both the distribution estimation and deconvolution steps, and we employ a sensor fusion layer (which fuses together predictions from models that are trained to track infections based on auxiliary surveillance streams) in order to improve accuracy and stability.

Funding Statement

MJ was supported by a fellowship from the Center for Machine Learning and Health at Carnegie Mellon.
AC and RJT were supported by a gift from Google.org.

Acknowledgments

The authors are grateful to Logan Brooks, Roni Rosenfeld, James Sharpnack, Sam Abbott, Joel Hellewell, and Sebastian Funk for several early insightful conversations.

Citation

Download Citation

Maria Jahja. Andrew Chin. Ryan J. Tibshirani. "Real-Time Estimation of COVID-19 Infections: Deconvolution and Sensor Fusion." Statist. Sci. 37 (2) 207 - 228, May 2022. https://doi.org/10.1214/22-STS856

Information

Published: May 2022
First available in Project Euclid: 16 May 2022

MathSciNet: MR4422305
zbMATH: 07535200
Digital Object Identifier: 10.1214/22-STS856

Keywords: Covid-19 , Deconvolution , nowcasting , sensor fusion

Rights: Copyright © 2022 Institute of Mathematical Statistics

Vol.37 • No. 2 • May 2022
Back to Top