Translator Disclaimer
February 2019 Comment: Strengthening Empirical Evaluation of Causal Inference Methods
David Jensen
Statist. Sci. 34(1): 77-81 (February 2019). DOI: 10.1214/18-STS690

Abstract

This is a contribution to the discussion of the paper by Dorie et al. (Statist. Sci. 34 (2019) 43–68), which reports the lessons learned from 2016 Atlantic Causal Inference Conference Competition. My comments strongly support the authors’ focus on empirical evaluation, using examples and experience from machine learning research, particularly focusing on the problem of algorithmic complexity. I argue that even broader and deeper empirical evaluation should be undertaken by the researchers who study causal inference. Finally, I highlight a few key conclusions that suggest where future research should focus.

Citation

Download Citation

David Jensen. "Comment: Strengthening Empirical Evaluation of Causal Inference Methods." Statist. Sci. 34 (1) 77 - 81, February 2019. https://doi.org/10.1214/18-STS690

Information

Published: February 2019
First available in Project Euclid: 12 April 2019

zbMATH: 07110677
MathSciNet: MR3938966
Digital Object Identifier: 10.1214/18-STS690

Rights: Copyright © 2019 Institute of Mathematical Statistics

JOURNAL ARTICLE
5 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.34 • No. 1 • February 2019
Back to Top