Open Access
May 2016 Trace-Contrast Models for Capture–Recapture Without Capture Histories
R. M. Fewster, B. C. Stevenson, D. L. Borchers
Statist. Sci. 31(2): 245-258 (May 2016). DOI: 10.1214/16-STS551
Abstract

Capture–recapture studies increasingly rely upon natural tags that allow animals to be identified by features such as coat markings, DNA profiles, acoustic profiles, or spatial locations. These innovations greatly increase the number of capture samples achievable and enable capture–recapture estimation for many inaccessible and elusive species. However, natural features are invariably imperfect as indicators of identity. Drawing on the recently developed Palm likelihood approach to parameter estimation in clustered point processes, we propose a new estimation framework based on comparing pairs of detections, which we term the trace-contrast framework. Importantly, no reconstruction of capture histories is needed. We show that we can achieve accurate, precise, and computationally fast inference. We illustrate the methods with a camera-trap study of a partially marked population of ship rats (Rattus rattus) in New Zealand.

References

1.

Baddeley, A. and Turner, R. (2005). Spatstat: An R package for analyzing spatial point patterns. J. Stat. Softw. 12 1–42.Baddeley, A. and Turner, R. (2005). Spatstat: An R package for analyzing spatial point patterns. J. Stat. Softw. 12 1–42.

2.

Barker, R. J., Schofield, M. R., Wright, J. A., Frantz, A. C. and Stevens, C. (2014). Closed-population capture–recapture modeling of samples drawn one at a time. Biometrics 70 775–782. MR3295738 10.1111/biom.12241Barker, R. J., Schofield, M. R., Wright, J. A., Frantz, A. C. and Stevens, C. (2014). Closed-population capture–recapture modeling of samples drawn one at a time. Biometrics 70 775–782. MR3295738 10.1111/biom.12241

3.

Bell, E. A., Bell, B. D. and Merton, D. V. (2016). The legacy of Big South Cape: Rat irruption to rat eradication. NZ J. Ecol. 40 205–211.Bell, E. A., Bell, B. D. and Merton, D. V. (2016). The legacy of Big South Cape: Rat irruption to rat eradication. NZ J. Ecol. 40 205–211.

4.

Borchers, D. L. and Efford, M. G. (2008). Spatially explicit maximum likelihood methods for capture–recapture studies. Biometrics 64 377–385, 664. MR2432407 10.1111/j.1541-0420.2007.00927.xBorchers, D. L. and Efford, M. G. (2008). Spatially explicit maximum likelihood methods for capture–recapture studies. Biometrics 64 377–385, 664. MR2432407 10.1111/j.1541-0420.2007.00927.x

5.

Borchers, D. L., Distiller, G., Foster, R., Harmsen, B. and Milazzo, L. (2014). Continuous-time spatially explicit capture–recapture models, with an application to a jaguar camera-trap survey. Methods Ecol. Evol. 5 656–665.Borchers, D. L., Distiller, G., Foster, R., Harmsen, B. and Milazzo, L. (2014). Continuous-time spatially explicit capture–recapture models, with an application to a jaguar camera-trap survey. Methods Ecol. Evol. 5 656–665.

6.

Carroll, E. L., Patenaude, N. J., Childerhouse, S. J., Kraus, S. D., Fewster, R. M. and Baker, C. S. (2011). Abundance of the New Zealand subantarctic southern right whale population estimated from photo-identification and genotype mark-recapture. Mar. Biol. 158 2565–2575.Carroll, E. L., Patenaude, N. J., Childerhouse, S. J., Kraus, S. D., Fewster, R. M. and Baker, C. S. (2011). Abundance of the New Zealand subantarctic southern right whale population estimated from photo-identification and genotype mark-recapture. Mar. Biol. 158 2565–2575.

7.

Charlton, B. D., Ellis, W. A. H., McKinnon, A. J., Brumm, J., Nilsson, K. and Fitch, W. T. (2011). Perception of male caller identity in koalas (Phascolarctos cinereus): Acoustic analysis and playback experiments. PLoS ONE 6 e20329.Charlton, B. D., Ellis, W. A. H., McKinnon, A. J., Brumm, J., Nilsson, K. and Fitch, W. T. (2011). Perception of male caller identity in koalas (Phascolarctos cinereus): Acoustic analysis and playback experiments. PLoS ONE 6 e20329.

8.

Cormack, R. (1964). Estimates of survival from the sighting of marked animals. Biometrika 51 429–438.Cormack, R. (1964). Estimates of survival from the sighting of marked animals. Biometrika 51 429–438.

9.

Diggle, P. J. (2003). Statistical Analysis of Spatial Point Patterns, 2nd ed. Arnold, London. MR743593Diggle, P. J. (2003). Statistical Analysis of Spatial Point Patterns, 2nd ed. Arnold, London. MR743593

10.

Fretwell, P. T., Staniland, I. J. and Forcada, J. (2014). Whales from space: Counting southern right whales by satellite. PLoS ONE 9 e88655.Fretwell, P. T., Staniland, I. J. and Forcada, J. (2014). Whales from space: Counting southern right whales by satellite. PLoS ONE 9 e88655.

11.

Guan, Y. (2006). A composite likelihood approach in fitting spatial point process models. J. Amer. Statist. Assoc. 101 1502–1512. MR2279475 10.1198/016214506000000500Guan, Y. (2006). A composite likelihood approach in fitting spatial point process models. J. Amer. Statist. Assoc. 101 1502–1512. MR2279475 10.1198/016214506000000500

12.

Jolly, G. M. (1965). Explicit estimates from capture–recapture data with both death and immigration-stochastic model. Biometrika 52 225–247. MR210227 10.1093/biomet/52.1-2.225Jolly, G. M. (1965). Explicit estimates from capture–recapture data with both death and immigration-stochastic model. Biometrika 52 225–247. MR210227 10.1093/biomet/52.1-2.225

13.

Kühl, H. S. and Burghardt, T. (2013). Animal biometrics: Quantifying and detecting phenotypic appearence. Trends Ecol. Evol. 28 432–441.Kühl, H. S. and Burghardt, T. (2013). Animal biometrics: Quantifying and detecting phenotypic appearence. Trends Ecol. Evol. 28 432–441.

14.

Møller, J. and Waagepetersen, R. P. (2007). Modern statistics for spatial point processes. Scand. J. Stat. 34 643–684. MR2392447Møller, J. and Waagepetersen, R. P. (2007). Modern statistics for spatial point processes. Scand. J. Stat. 34 643–684. MR2392447

15.

Nathan, H. W. (2016). Detection probability of invasive ship rats: Biological causation and management implications. Ph.D. thesis, Univ. Auckland, New Zealand.Nathan, H. W. (2016). Detection probability of invasive ship rats: Biological causation and management implications. Ph.D. thesis, Univ. Auckland, New Zealand.

16.

Neyman, J. and Scott, E. L. (1958). Statistical approach to problems of cosmology. J. R. Stat. Soc. Ser. B. Stat. Methodol. 20 1–43. MR105309Neyman, J. and Scott, E. L. (1958). Statistical approach to problems of cosmology. J. R. Stat. Soc. Ser. B. Stat. Methodol. 20 1–43. MR105309

17.

Palm, C. (1943). Intensitätsschwankungen im Fernsprechverkehr. Ericsson Technics 44 1–189. MR11402Palm, C. (1943). Intensitätsschwankungen im Fernsprechverkehr. Ericsson Technics 44 1–189. MR11402

18.

Prokešová, M. and Jensen, E. B. V. (2013). Asymptotic Palm likelihood theory for stationary point processes. Ann. Inst. Statist. Math. 65 387–412. MR3011627 10.1007/s10463-012-0376-7Prokešová, M. and Jensen, E. B. V. (2013). Asymptotic Palm likelihood theory for stationary point processes. Ann. Inst. Statist. Math. 65 387–412. MR3011627 10.1007/s10463-012-0376-7

19.

Robins, J. H., Miller, S. D., Russell, J. C., Harper, G. A. and Fewster, R. M. (2016). Where did the rats of Big South Cape Island come from? NZ J. Ecol. 40 229–234.Robins, J. H., Miller, S. D., Russell, J. C., Harper, G. A. and Fewster, R. M. (2016). Where did the rats of Big South Cape Island come from? NZ J. Ecol. 40 229–234.

20.

Seber, G. A. F. (1965). A note on the multiple-recapture census. Biometrika 52 249–259. MR210228 10.1093/biomet/52.1-2.249Seber, G. A. F. (1965). A note on the multiple-recapture census. Biometrika 52 249–259. MR210228 10.1093/biomet/52.1-2.249

21.

Stevenson, B. C., Borchers, D. L., Altwegg, R., Swift, R. J., Gillespie, D. M. and Measey, G. J. (2015). A general framework for animal density estimation from acoustic detections across a fixed microphone array. Methods Ecol. Evol. 6 38–48.Stevenson, B. C., Borchers, D. L., Altwegg, R., Swift, R. J., Gillespie, D. M. and Measey, G. J. (2015). A general framework for animal density estimation from acoustic detections across a fixed microphone array. Methods Ecol. Evol. 6 38–48.

22.

Taberlet, P. and Luikart, G. (1999). Non-invasive genetic sampling and individual identification. Biol. J. Linn. Soc. 68 41–55.Taberlet, P. and Luikart, G. (1999). Non-invasive genetic sampling and individual identification. Biol. J. Linn. Soc. 68 41–55.

23.

Tanaka, U., Ogata, Y. and Stoyan, D. (2008). Parameter estimation and model selection for Neyman–Scott point processes. Biom. J. 50 43–57. MR2414637 10.1002/bimj.200610339Tanaka, U., Ogata, Y. and Stoyan, D. (2008). Parameter estimation and model selection for Neyman–Scott point processes. Biom. J. 50 43–57. MR2414637 10.1002/bimj.200610339

24.

Thomas, M. (1949). A generalization of Poisson’s binomial limit for use in ecology. Biometrika 36 18–25. MR33999 10.1093/biomet/36.1-2.18Thomas, M. (1949). A generalization of Poisson’s binomial limit for use in ecology. Biometrika 36 18–25. MR33999 10.1093/biomet/36.1-2.18

25.

Vale, R. T. R., Fewster, R. M., Carroll, E. L. and Patenaude, N. J. (2014). Maximum likelihood estimation for model $M_{t,\alpha}$ for capture–recapture data with misidentification. Biometrics 70 962–971. MR3295757 10.1111/biom.12195Vale, R. T. R., Fewster, R. M., Carroll, E. L. and Patenaude, N. J. (2014). Maximum likelihood estimation for model $M_{t,\alpha}$ for capture–recapture data with misidentification. Biometrics 70 962–971. MR3295757 10.1111/biom.12195

26.

Waagepetersen, R. P. (2007). An estimating function approach to inference for inhomogeneous Neyman–Scott processes. Biometrics 63 252–258, 315. MR2345595 10.1111/j.1541-0420.2006.00667.xWaagepetersen, R. P. (2007). An estimating function approach to inference for inhomogeneous Neyman–Scott processes. Biometrics 63 252–258, 315. MR2345595 10.1111/j.1541-0420.2006.00667.x

27.

Waagepetersen, R. and Schweder, T. (2006). Likelihood-based inference for clustered line transect data. J. Agric. Biol. Environ. Stat. 11 264–279.Waagepetersen, R. and Schweder, T. (2006). Likelihood-based inference for clustered line transect data. J. Agric. Biol. Environ. Stat. 11 264–279.

28.

Wright, J. A., Barker, R. J., Schofield, M. R., Frantz, A. C., Byrom, A. E. and Gleeson, D. M. (2009). Incorporating genotype uncertainty into mark-recapture-type models for estimating abundance using DNA samples. Biometrics 65 833–840. MR2649856 10.1111/j.1541-0420.2008.01165.xWright, J. A., Barker, R. J., Schofield, M. R., Frantz, A. C., Byrom, A. E. and Gleeson, D. M. (2009). Incorporating genotype uncertainty into mark-recapture-type models for estimating abundance using DNA samples. Biometrics 65 833–840. MR2649856 10.1111/j.1541-0420.2008.01165.x
Copyright © 2016 Institute of Mathematical Statistics
R. M. Fewster, B. C. Stevenson, and D. L. Borchers "Trace-Contrast Models for Capture–Recapture Without Capture Histories," Statistical Science 31(2), 245-258, (May 2016). https://doi.org/10.1214/16-STS551
Published: May 2016
Vol.31 • No. 2 • May 2016
Back to Top