Translator Disclaimer
2019 $\mathcal {W}$-Gorenstein $N$-complexes
Bo Lu, Jiaqun Wei, Zhenxing Di
Rocky Mountain J. Math. 49(6): 1973-1992 (2019). DOI: 10.1216/RMJ-2019-49-6-1973

Abstract

Given an integer $N\geq 2$ and a self-orthogonal subcategory $\mathcal {W}$ of an abelian category $\mathscr {A}$, we investigate the $\mathcal {W}$-Gorenstein $N$-complexes. We show that an $N$-complex $G$ is $\mathcal {W}$-Gorenstein if and only if $G$ is an $N$-complex consisting of $\mathcal {W}$-Gorenstein objects in $\mathscr {A}$. As an application, we improve a result of Estrada.

Citation

Download Citation

Bo Lu. Jiaqun Wei. Zhenxing Di. "$\mathcal {W}$-Gorenstein $N$-complexes." Rocky Mountain J. Math. 49 (6) 1973 - 1992, 2019. https://doi.org/10.1216/RMJ-2019-49-6-1973

Information

Published: 2019
First available in Project Euclid: 3 November 2019

MathSciNet: MR4027244
Digital Object Identifier: 10.1216/RMJ-2019-49-6-1973

Subjects:
Primary: 18G25
Secondary: 18E10, 18G35

Rights: Copyright © 2019 Rocky Mountain Mathematics Consortium

JOURNAL ARTICLE
20 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.49 • No. 6 • 2019
Back to Top