Translator Disclaimer
2017 The discriminant of abelian number fields
Victor Bautista-Ancona, Jose Uc-Kuk
Rocky Mountain J. Math. 47(1): 39-52 (2017). DOI: 10.1216/RMJ-2017-47-1-39

Abstract

For an abelian number field $K$, the discriminant can be obtained from the conductor~$m$ of~$K$, the degree of~$K$ over $\mathbb {Q}$, and the degrees of extensions $K\cdot \mathbb {Q}(\zeta _{m/p^{\alpha }})/\mathbb {Q}(\zeta _{m/p^{\alpha }})$, where $p$ runs through the set of primes that divide $m$, and $p^{\alpha }$ is the greatest power that divides~$m$. In this paper, we give a formula for computing the discriminant of any abelian number field.

Citation

Download Citation

Victor Bautista-Ancona. Jose Uc-Kuk. "The discriminant of abelian number fields." Rocky Mountain J. Math. 47 (1) 39 - 52, 2017. https://doi.org/10.1216/RMJ-2017-47-1-39

Information

Published: 2017
First available in Project Euclid: 3 March 2017

zbMATH: 1362.11088
MathSciNet: MR3619757
Digital Object Identifier: 10.1216/RMJ-2017-47-1-39

Subjects:
Primary: 11R18, 11R29

Rights: Copyright © 2017 Rocky Mountain Mathematics Consortium

JOURNAL ARTICLE
14 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.47 • No. 1 • 2017
Back to Top