Open Access
Translator Disclaimer
2016 Amicable pairs and aliquot cycles for elliptic curves over number fields
Jim Brown, David Heras, Kevin James, Rodney Keaton, Andrew Qian
Rocky Mountain J. Math. 46(6): 1853-1866 (2016). DOI: 10.1216/RMJ-2016-46-6-1853

Abstract

Let $E/\mathbb{Q} $ be an elliptic curve. Silverman and Stange define primes $p$ and $q$ to be an elliptic, amicable pair if $\#E(\mathbb{F} _p) = q$ and $\#E(\mathbb{F} _q) = p$. More generally, they define the notion of aliquot cycles for elliptic curves. Here, we study the same notion in the case that the elliptic curve is defined over a number field~$K$. We focus on proving the existence of an elliptic curve~$E/K$ with aliquot cycle $(\mathfrak{p} _1, \ldots , \mathfrak{p} _{n})$ where the $\mathfrak{p} _{i}$ are primes of~$K$ satisfying mild conditions.

Citation

Download Citation

Jim Brown. David Heras. Kevin James. Rodney Keaton. Andrew Qian. "Amicable pairs and aliquot cycles for elliptic curves over number fields." Rocky Mountain J. Math. 46 (6) 1853 - 1866, 2016. https://doi.org/10.1216/RMJ-2016-46-6-1853

Information

Published: 2016
First available in Project Euclid: 4 January 2017

zbMATH: 06673134
MathSciNet: MR3591263
Digital Object Identifier: 10.1216/RMJ-2016-46-6-1853

Subjects:
Primary: 11G05

Rights: Copyright © 2016 Rocky Mountain Mathematics Consortium

JOURNAL ARTICLE
14 PAGES


SHARE
Vol.46 • No. 6 • 2016
Back to Top