Open Access
2016 A certain class of approximations for the $q$-digamma function
Ahmed Salem
Rocky Mountain J. Math. 46(5): 1665-1677 (2016). DOI: 10.1216/RMJ-2016-46-5-1665

Abstract

In this paper, we derive a class of approximations of the $q$-digamma function $\psi _q(x)$. The infinite family \[ I_a(x;q)=\log [x+a]_q+\frac {q^x\log q}{1-q^x}-\bigg (\frac 12-a\bigg )H(q-1)\log q, \] $a\in [0,1]$; $q>0$, can be used as approximating functions for $\psi _q(x)$, where $[x]_q=(1-q^x)/(1-q)$ and $H(\cdot )$ is the Heaviside step function. We show that, for all $a\in [0,1]$, $I_a$ is asymptotically equivalent to $\psi _q(x)$ for $q>0$ and is a good pointwise approximation.

Citation

Download Citation

Ahmed Salem. "A certain class of approximations for the $q$-digamma function." Rocky Mountain J. Math. 46 (5) 1665 - 1677, 2016. https://doi.org/10.1216/RMJ-2016-46-5-1665

Information

Published: 2016
First available in Project Euclid: 7 December 2016

zbMATH: 1354.30028
MathSciNet: MR3580805
Digital Object Identifier: 10.1216/RMJ-2016-46-5-1665

Subjects:
Primary: 30E10 , 33D05

Keywords: $q$-Digamma function , approximations

Rights: Copyright © 2016 Rocky Mountain Mathematics Consortium

Vol.46 • No. 5 • 2016
Back to Top