Open Access
Translator Disclaimer
2016 The geometry of cyclic hyperbolic polygons
Jason DeBlois
Rocky Mountain J. Math. 46(3): 801-862 (2016). DOI: 10.1216/RMJ-2016-46-3-801

Abstract

We will call a hyperbolic polygon \textit {cyclic}, \textit {horocyclic}, or \textit {equidistant} if its vertices lie on a metric circle, a horocycle, or a component of the equidistant locus to a hyperbolic geodesic, respectively. Such convex $n$-gons are parametrized by the subspaces of $(\mathbb {R}^+)^n$ that contain their side length collections, and area and circumcircle or ``collar'' radius determine symmetric, smooth functions on these spaces. We give formulas for and bounds on the derivatives of these functions and make some observations on their behavior. Notably, the monotonicity properties of area and circumcircle radius exhibit qualitative differences on the collection of centered vs non-centered cyclic polygons, where a cyclic polygon is \textit {centered} if it contains the center of its circumcircle in its interior.

Citation

Download Citation

Jason DeBlois. "The geometry of cyclic hyperbolic polygons." Rocky Mountain J. Math. 46 (3) 801 - 862, 2016. https://doi.org/10.1216/RMJ-2016-46-3-801

Information

Published: 2016
First available in Project Euclid: 7 September 2016

zbMATH: 1350.51003
MathSciNet: MR3544836
Digital Object Identifier: 10.1216/RMJ-2016-46-3-801

Subjects:
Primary: 51M09

Rights: Copyright © 2016 Rocky Mountain Mathematics Consortium

JOURNAL ARTICLE
62 PAGES


SHARE
Vol.46 • No. 3 • 2016
Back to Top