Open Access
Translator Disclaimer
2016 On the spectral moment of graphs with given clique number
Shuchao Li, Shuna Hu
Rocky Mountain J. Math. 46(1): 261-282 (2016). DOI: 10.1216/RMJ-2016-46-1-261

Abstract

Let $\mathscr {L}_{n,t}$ be the set of all $n$-vertex connected graphs with clique number $t$ $(2\leq t\leq n)$. For $n$-vertex connected graphs with given clique number, lexicographic ordering by spectral moments ($S$-order) is discussed in this paper. The first $\sum _{i=1}^{\lfloor ({n-t-1})/{3}\rfloor }(n-t-3i)+1$ graphs with $3\le t\le n-4$, and the last few graphs, in the $S$-order, among $\mathscr {L}_{n,t}$ are characterized. In addition, all graphs in $\mathscr {L}_{n,n}\bigcup \mathscr {L}_{n,n-1}$ have an $S$-order; for the cases $t=n-2$ and $t=n-3$, the first three and the first seven graphs in the set $\mathscr {L}_{n,t}$ are characterized, respectively.

Citation

Download Citation

Shuchao Li. Shuna Hu. "On the spectral moment of graphs with given clique number." Rocky Mountain J. Math. 46 (1) 261 - 282, 2016. https://doi.org/10.1216/RMJ-2016-46-1-261

Information

Published: 2016
First available in Project Euclid: 23 May 2016

zbMATH: 1337.05074
MathSciNet: MR3506088
Digital Object Identifier: 10.1216/RMJ-2016-46-1-261

Subjects:
Primary: 05C50, 15A18‎

Rights: Copyright © 2016 Rocky Mountain Mathematics Consortium

JOURNAL ARTICLE
22 PAGES


SHARE
Vol.46 • No. 1 • 2016
Back to Top