Open Access
2014 Sub- and super-additive properties of the psi function
Horst Alzer
Rocky Mountain J. Math. 44(5): 1399-1414 (2014). DOI: 10.1216/RMJ-2014-44-5-1399

Abstract

We prove the following sub- and super-additive properties of the psi function. \begin{enumerate} \item[(i)] The inequality \[ \psi\bigl( (x+y)^{\alpha} \bigr) \leq \psi(x^{\alpha})+\psi(y^{\alpha}) \quad{(\alpha \in\mathbf{R})} \] holds for all $x,y>0$ if and only if $\alpha\leq \alpha_0=-1.0266\ldots$\,. Here, $\alpha_0$ is given by \[ 2^{\alpha_0}=\inf_{t>0} \frac{\psi^{-1}\bigl( 2\psi(t) \bigr)}{t}=0.4908\ldots\, . \] \item[(ii)] The inequality \[ \psi(x^{\beta})+\psi(y^{\beta}) \leq \psi\bigl( (x+y)^{\beta} \bigr) \quad(\beta \in\mathbf{R}) \] is valid for all $x,y>0$ if and only if $\beta=0$. \end{enumerate}

Citation

Download Citation

Horst Alzer. "Sub- and super-additive properties of the psi function." Rocky Mountain J. Math. 44 (5) 1399 - 1414, 2014. https://doi.org/10.1216/RMJ-2014-44-5-1399

Information

Published: 2014
First available in Project Euclid: 1 January 2015

zbMATH: 1308.33001
MathSciNet: MR3295635
Digital Object Identifier: 10.1216/RMJ-2014-44-5-1399

Subjects:
Primary: 33B15 , ‎39B62

Keywords: Concave , convex , Inequalities‎ , Psi function , sub-additive , super-additive

Rights: Copyright © 2014 Rocky Mountain Mathematics Consortium

Vol.44 • No. 5 • 2014
Back to Top