Open Access
May, 2011 Coefficient multipliers on Banach spaces of analytic functions
Óscar Blasco , Miroslav Pavlović
Rev. Mat. Iberoamericana 27(2): 415-447 (May, 2011).

Abstract

Motivated by an old paper of Wells [J. London Math. Soc. {\bf 2} (1970), 549-556] we define the space $X\otimes Y$, where $X$ and $Y$ are "homogeneous" Banach spaces of analytic functions on the unit disk $\mathbb{D}$, by the requirement that $f$ can be represented as $f=\sum_{j=0}^\infty g_n * h_n$, with $g_n\in X$, $h_n\in Y$ and $\sum_{n=1}^\infty \|g_n\|_X \|h_n\|_Y < \infty$. We show that this construction is closely related to coefficient multipliers. For example, we prove the formula $((X\otimes Y),Z)=(X,(Y,Z))$, where $(U,V)$ denotes the space of multipliers from $U$ to $V$, and as a special case $(X\otimes Y)^*=(X,Y^*)$, where $U^*=(U,H^\infty)$. We determine $H^1\otimes X$ for a class of spaces that contains $H^p$ and $\ell^p$ $(1\le p\le 2)$, and use this together with the above formulas to give quick proofs of some important results on multipliers due to Hardy and Littlewood, Zygmund and Stein, and others.

Citation

Download Citation

Óscar Blasco . Miroslav Pavlović . "Coefficient multipliers on Banach spaces of analytic functions." Rev. Mat. Iberoamericana 27 (2) 415 - 447, May, 2011.

Information

Published: May, 2011
First available in Project Euclid: 10 June 2011

zbMATH: 1235.42004
MathSciNet: MR2848526

Subjects:
Primary: 30A99 , 42A45
Secondary: 30D55 , 46A45 , ‎46E15

Keywords: analytic functions , ‎Banach spaces , coefficient multipliers , Hardy spaces , Tensor products

Rights: Copyright © 2011 Departamento de Matemáticas, Universidad Autónoma de Madrid

Vol.27 • No. 2 • May, 2011
Back to Top