Open Access
March, 2010 Lebesgue points and the fundamental convergence theorem for superharmonic functions on metric spaces
Anders Björn , Jana Björn , Mikko Parviainen
Rev. Mat. Iberoamericana 26(1): 147-174 (March, 2010).

Abstract

We prove the nonlinear fundamental convergence theorem for superharmonic functions on metric measure spaces. Our proof seems to be new even in the Euclidean setting. The proof uses direct methods in the calculus of variations and, in particular, avoids advanced tools from potential theory. We also provide a new proof for the fact that a Newtonian function has Lebesgue points outside a set of capacity zero, and give a sharp result on when superharmonic functions have $L^q$-Lebesgue points everywhere.

Citation

Download Citation

Anders Björn . Jana Björn . Mikko Parviainen . "Lebesgue points and the fundamental convergence theorem for superharmonic functions on metric spaces." Rev. Mat. Iberoamericana 26 (1) 147 - 174, March, 2010.

Information

Published: March, 2010
First available in Project Euclid: 16 February 2010

zbMATH: 1203.31018
MathSciNet: MR2666312

Subjects:
Primary: 31C45
Secondary: 31C05 , 35J60

Keywords: $mathcal{A}$-harmonic , $p$-harmonic , fundamental convergence theorem , Lebesgue point , metric space , Newtonian function , nonlinear , quasicontinuous , Sobolev function , superharmonic , superminimizer , Supersolution , weak upper gradient

Rights: Copyright © 2010 Departamento de Matemáticas, Universidad Autónoma de Madrid

Vol.26 • No. 1 • March, 2010
Back to Top