Abstract
Let $X$ be a symmetric compact Riemann surface whose full group of conformal automorphisms is cyclic. We derive a formula for counting the number of ovals of the symmetries of $X$ in terms of few data of the monodromy of the covering $X\rightarrow X/G$, where $G=\mbox{\rm Aut\/}^\pm X$ is the full group of conformal and anticonformal automorphisms of $X$.
Citation
Emilio Bujalance . Francisco Javier Cirre . José Manuel Gamboa . Grzegorz Gromadzki . "On the number of ovals of a symmetry of a compact Riemann surface." Rev. Mat. Iberoamericana 24 (2) 391 - 405, July, 2008.
Information