Open Access
July, 2008 On the number of ovals of a symmetry of a compact Riemann surface
Emilio Bujalance , Francisco Javier Cirre , José Manuel Gamboa , Grzegorz Gromadzki
Rev. Mat. Iberoamericana 24(2): 391-405 (July, 2008).

Abstract

Let $X$ be a symmetric compact Riemann surface whose full group of conformal automorphisms is cyclic. We derive a formula for counting the number of ovals of the symmetries of $X$ in terms of few data of the monodromy of the covering $X\rightarrow X/G$, where $G=\mbox{\rm Aut\/}^\pm X$ is the full group of conformal and anticonformal automorphisms of $X$.

Citation

Download Citation

Emilio Bujalance . Francisco Javier Cirre . José Manuel Gamboa . Grzegorz Gromadzki . "On the number of ovals of a symmetry of a compact Riemann surface." Rev. Mat. Iberoamericana 24 (2) 391 - 405, July, 2008.

Information

Published: July, 2008
First available in Project Euclid: 11 August 2008

zbMATH: 1172.30014
MathSciNet: MR2459197

Subjects:
Primary: 14H , 30F

Keywords: ovals , Riemann surface , symmetries

Rights: Copyright © 2008 Departamento de Matemáticas, Universidad Autónoma de Madrid

Vol.24 • No. 2 • July, 2008
Back to Top