Open Access
April, 2008 A finiteness theorem for the space of $L^{p}$ harmonic sections
Stefano Pigola , Marco Rigoli , Alberto G. Setti
Rev. Mat. Iberoamericana 24(1): 91-116 (April, 2008).

Abstract

In this paper we give a unified and improved treatment to finite dimensionality results for subspaces of $L^{p}$ harmonic sections of Riemannian or Hermitian vector bundles over complete manifolds. The geometric conditions on the manifold are subsumed by the assumption that the Morse index of a related Schr#x00F6;dinger operator is finite. Applications of the finiteness theorem to concrete geometric situations are also presented.

Citation

Download Citation

Stefano Pigola . Marco Rigoli . Alberto G. Setti . "A finiteness theorem for the space of $L^{p}$ harmonic sections." Rev. Mat. Iberoamericana 24 (1) 91 - 116, April, 2008.

Information

Published: April, 2008
First available in Project Euclid: 16 July 2008

zbMATH: 1153.53024
MathSciNet: MR2435968

Subjects:
Primary: 35J60 , 53C21

Keywords: harmonic sections , Morse index , Riemannian vector bundles

Rights: Copyright © 2008 Departamento de Matemáticas, Universidad Autónoma de Madrid

Vol.24 • No. 1 • April, 2008
Back to Top