Abstract
We study a Henstock-Kurzweil type integral defined on a complete metric measure space \(X\) endowed with a Radon measure \(\mu\) and with a family of “cells” \(\mathcal{F}\) that satisfies the Vitali covering theorem with respect to \(\mu\). This integral encloses, in particular, the classical Henstock-Kurzweil integral on the real line, the dyadic Henstock-Kurzweil integral, the Mawhin’s integral [19], and the \(s\)-HK integral [4]. The main result of this paper is the extension of the usual descriptive characterizations of the Henstock-Kurzweil integral on the real line, in terms of \(ACG^*\) functions (Main Theorem 1) and in terms of variational measures (Main Theorem 2).
Citation
Donatella Bongiorno. Giuseppa Corrao. "An Integral on a Complete Metric Measure Space." Real Anal. Exchange 40 (1) 157 - 178, 2013/2014.