Open Access
2010/2011 An Example of a Quasi-continuous Hamel Function
Tomasz Natkaniec
Real Anal. Exchange 36(1): 231-236 (2010/2011).

Abstract

We say that $f: \mathR\to\mathR$ is a Hamel function if $f$, considered as a subset of $\mathR^2$, is a Hamel basis of $\mathR^2$. For a Cantor set $C\subset\mathR$ we construct a quasi-continuous Hamel function such that $f\restr(\mathR\setminus C)$ is of Baire class one.

Citation

Download Citation

Tomasz Natkaniec. "An Example of a Quasi-continuous Hamel Function." Real Anal. Exchange 36 (1) 231 - 236, 2010/2011.

Information

Published: 2010/2011
First available in Project Euclid: 14 March 2011

zbMATH: 1247.26008
MathSciNet: MR3016415

Subjects:
Primary: 15A03 , 26A15
Secondary: 26A21

Keywords: Borel function , Hamel basis , Hamel function , quasi-continuous function

Rights: Copyright © 2010 Michigan State University Press

Vol.36 • No. 1 • 2010/2011
Back to Top