Open Access
2008/2009 On Monotone Presentations of Borel Sets
Tamás Mátrai, Miroslav Zelený
Real Anal. Exchange 34(2): 311-318 (2008/2009).


If $A$ is a ${\bf \Sigma}^{0}_{\xi}$ set and $A_{n}$ $(n \omega)$ are Borel sets then we call $\{A_{n} \colon n \omega\}$ a presentation of $A$ if $A = \bigcup_{n \omega}A_{n}$ and $A_{n}$ $(n \omega)$ have lower Borel class than $A$ has. We show that for $2 \leq \xi \omega_{1}$ it is not possible to assign a presentation to ${\bf \Sigma}^{0}_{\xi}$ sets in a monotone way; i.e., it is not possible to define functions $f_{n} \colon {\bf \Sigma}^{0}_{\xi} \rightarrow {\bf \Pi}^{0}_{\xi}$ $(n \omega)$ such that for every $A \in {\bf \Sigma}^{0}_{\xi}$ we have $A = \bigcup_{n \omega}f_{n}(A)$ and $A, A' \in {\bf \Sigma}^{0}_{\xi}$, $A \subseteq A'$ implies $f_{n}(A) \subseteq f_{n}(A')$ $(n \omega)$. This answers a question of M\'arton Elekes in the negative. We also show the nonexistence of monotone presentation for Borel functions.


Download Citation

Tamás Mátrai. Miroslav Zelený. "On Monotone Presentations of Borel Sets." Real Anal. Exchange 34 (2) 311 - 318, 2008/2009.


Published: 2008/2009
First available in Project Euclid: 29 October 2009

zbMATH: 1187.03038
MathSciNet: MR2569189

Primary: 03E15
Secondary: 26A21 , 28A05 , 28A10 , 54C50 , 54H05

Keywords: Borel function , Borel set , canonical presentation , monotone presentation

Rights: Copyright © 2008 Michigan State University Press

Vol.34 • No. 2 • 2008/2009
Back to Top