Abstract
A function $ f: \mathbb{R}^n \to \mathbb{R}$ satisfies condition $(Q_i(x))$ (resp. $(Q_s(x))$, [$Q_o(x)$]) at a point $x$ if for each real $r > 0$ and for each set $U \ni x$ belonging to the Euclidean topology in $\mathbb{R} ^n$ (resp.~to the strong density topology [to the ordinary density topology]) there is an open set $I$ such that $I \cap U \neq \emptyset $, $f$ is Lebesgue integrable on $I\cap U$ and $$\left|\frac{1}{\mu (U\cap I)}\int_{U \cap I} f(t)dt - f(x) \right| < r.$$ These notions are modifications of quasicontinuity or approximate quasicontinuity. In this article we investigate the limits of sequences of such functions.
Citation
Zbigniew Grande. "On the convergence of sequences of integrally quasicontinuous functions.." Real Anal. Exchange 30 (2) 767 - 778, 2004-2005.
Information