Open Access
2004-2005 Variable Exponent Lebesgue Spaces on Metric Spaces: The Hardy-Littlewood Maximal Operator
Petteri Harjulehto, Peter Hästö, Mikko Pere
Author Affiliations +
Real Anal. Exchange 30(1): 87-104 (2004-2005).

Abstract

In this article we introduce variable exponent Lebesgue spaces on metric measure spaces and consider a central tool in geometric analysis: the Hardy-Littlewood maximal operator. We show that the maximal operator is bounded provided the variable exponent satisfies a $\log$-H\"older type estimate. This condition is known to be essentially sharp in real Euclidean space, however, we show that this is not so in metric spaces.

Citation

Download Citation

Petteri Harjulehto. Peter Hästö. Mikko Pere. "Variable Exponent Lebesgue Spaces on Metric Spaces: The Hardy-Littlewood Maximal Operator." Real Anal. Exchange 30 (1) 87 - 104, 2004-2005.

Information

Published: 2004-2005
First available in Project Euclid: 27 July 2005

zbMATH: 1072.42016
MathSciNet: MR2126796

Subjects:
Primary: 42B25 , 42B33

Keywords: Lebesgue space , Maximal operator , metric measure space , ‎variable exponent

Rights: Copyright © 2004 Michigan State University Press

Vol.30 • No. 1 • 2004-2005
Back to Top