Abstract
Necessary and sufficient for $\int_a^bfg_n\to \int_a^bfg$ for all Henstock--Kurzweil integrable functions $f$ is that $g$ be of bounded variation, $g_n$ be uniformly bounded and of uniform bounded variation and, on each compact interval in $(a,b)$, $g_n\to g$ in measure or in the $L^1$ norm. The same conditions are necessary and sufficient for $\|f(g_n-g)\|\to 0$ for all Henstock--Kurzweil integrable functions $f$. If $g_n\to g$ a.e., then convergence $\|fg_n\|\to\|fg\|$ for all Henstock--Kurzweil integrable functions $f$ is equivalent to $\|f(g_n-g)\|\to 0$. This extends a theorem due to Lee Peng-Yee.
Citation
Parasar Mohanty. Erik Talvila. "A product convergence theorem for Henstock-Kurzweil integrals.." Real Anal. Exchange 29 (1) 199 - 204, 2003-2004.
Information