Open Access
2003-2004 A product convergence theorem for Henstock-Kurzweil integrals.
Parasar Mohanty, Erik Talvila
Author Affiliations +
Real Anal. Exchange 29(1): 199-204 (2003-2004).

Abstract

Necessary and sufficient for $\int_a^bfg_n\to \int_a^bfg$ for all Henstock--Kurzweil integrable functions $f$ is that $g$ be of bounded variation, $g_n$ be uniformly bounded and of uniform bounded variation and, on each compact interval in $(a,b)$, $g_n\to g$ in measure or in the $L^1$ norm. The same conditions are necessary and sufficient for $\|f(g_n-g)\|\to 0$ for all Henstock--Kurzweil integrable functions $f$. If $g_n\to g$ a.e., then convergence $\|fg_n\|\to\|fg\|$ for all Henstock--Kurzweil integrable functions $f$ is equivalent to $\|f(g_n-g)\|\to 0$. This extends a theorem due to Lee Peng-Yee.

Citation

Download Citation

Parasar Mohanty. Erik Talvila. "A product convergence theorem for Henstock-Kurzweil integrals.." Real Anal. Exchange 29 (1) 199 - 204, 2003-2004.

Information

Published: 2003-2004
First available in Project Euclid: 9 June 2006

zbMATH: 1061.26009
MathSciNet: MR2061303

Subjects:
Primary: 26A39 , 46E30

Keywords: Alexiewicz norm , convergence theorem , ‎Henstock--Kurzweil integral

Rights: Copyright © 2003 Michigan State University Press

Vol.29 • No. 1 • 2003-2004
Back to Top