Abstract
We describe here an example of a Darboux function $k$ from the unit interval $\mathcal{I}=[0,1]$ onto itself such that $k$ is not the composition of any finite collection of connectivity functions from $\mathcal{I}$ into $\mathcal{I}$. This answers a question of Ceder [2].
Citation
Krzysztof Ciesielski. Kenneth R. Kellum. "Compositions of Darboux and Connectivity Functions." Real Anal. Exchange 24 (2) 599 - 606, 1998/1999.
Information