2024 Sharp Bounds for a Sine Sum
Horst Alzer, Man Kam Kwong
Real Anal. Exchange Advance Publication 1-13 (2024). DOI: 10.14321/realanalexch.1717270789

Abstract

We prove the double-inequality \[ \frac{r(1-r^n)}{1+r}<\sum_{k=1}^n\frac{r^k}{k}\frac{\sin(kx)}{\sin(x)} < \frac{r(1-r^n)}{1-r}. \] The left-hand side holds for even \(n\geqslant 2\), \(r\in (0,1]\), \(x\in (0,\pi)\), whereas the right-hand side is valid for \(n\geqslant 2\), \(r\in (0,1)\), \(x\in (0,\pi)\). Both bounds are sharp. An application of the second inequality leads to a new two-parameter class of absolutely monotonic functions.

Citation

Download Citation

Horst Alzer. Man Kam Kwong. "Sharp Bounds for a Sine Sum." Real Anal. Exchange Advance Publication 1 - 13, 2024. https://doi.org/10.14321/realanalexch.1717270789

Information

Published: 2024
First available in Project Euclid: 26 October 2024

Digital Object Identifier: 10.14321/realanalexch.1717270789

Subjects:
Primary: 26A48 , 26D05 , 26D15 , 33B10

Keywords: absolutely monotonic , arctan , inequality , Sine sum

Rights: Copyright © 2024 Michigan State University Press

Advance Publication
Back to Top