2023 A RENORMING CHARACTERISATION OF BANACH SPACES CONTAINING 1(κ)
Antonio Avilés, Gonzalo Martínez-Cervantes, Abraham Rueda Zoca
Author Affiliations +
Publ. Mat. 67(2): 601-609 (2023). DOI: 10.5565/PUBLMAT6722305

Abstract

A result of G. Godefroy asserts that a Banach space X contains an isomorphic copy of 1 if and only if there is an equivalent norm |||·||| such that, for every finite-dimensional subspace Y of X and every ε>0, there exists xSX so that |||y+rx|||(1ε)(|||y|||+|r|) for every yY and every r. In this paper we generalise this result to larger cardinals, showing that if κ is an uncountable cardinal, then a Banach space X contains a copy of 1(κ) if and only if there is an equivalent norm |||·||| on X such that for every subspace Y of X with dens(Y)<κ there exists a norm-one vector x so that |||y+rx|||=|||y|||+|r| whenever yY and r. This result answers a question posed by S. Ciaci, J. Langemets, and A. Lissitsin, where the authors wonder whether the above statement holds for infinite successor cardinals. We also show that, in the countable case, the result of Godefroy cannot be improved to take ε=0.

Citation

Download Citation

Antonio Avilés. Gonzalo Martínez-Cervantes. Abraham Rueda Zoca. "A RENORMING CHARACTERISATION OF BANACH SPACES CONTAINING 1(κ)." Publ. Mat. 67 (2) 601 - 609, 2023. https://doi.org/10.5565/PUBLMAT6722305

Information

Received: 28 April 2021; Revised: 6 September 2021; Published: 2023
First available in Project Euclid: 29 June 2023

MathSciNet: MR4609013
Digital Object Identifier: 10.5565/PUBLMAT6722305

Subjects:
Primary: 46B03 , 46B20 , 46B26
Secondary: 46B04

Keywords: ball-covering , ℓ1(κ) , octahedral norm , renorming

Rights: Copyright © 2023 Universitat Autònoma de Barcelona, Departament de Matemàtiques

Vol.67 • No. 2 • 2023
Back to Top