2023 CURVATURE OF THE COMPLETION OF THE SPACE OF SASAKI POTENTIALS
Thomas Franzinetti
Author Affiliations +
Publ. Mat. 67(1): 447-468 (2023). DOI: 10.5565/PUBLMAT6712309

Abstract

Given a compact Sasaki manifold, we endow the space of the Sasaki potentials with an analogue of the Mabuchi metric. We show that its metric completion is negatively curved in the sense of Alexandrov.

Citation

Download Citation

Thomas Franzinetti. "CURVATURE OF THE COMPLETION OF THE SPACE OF SASAKI POTENTIALS." Publ. Mat. 67 (1) 447 - 468, 2023. https://doi.org/10.5565/PUBLMAT6712309

Information

Received: 29 January 2021; Accepted: 1 October 2021; Published: 2023
First available in Project Euclid: 19 December 2022

MathSciNet: MR4522938
zbMATH: 1509.31019
Digital Object Identifier: 10.5565/PUBLMAT6712309

Subjects:
Primary: 31C12 , 32U15 , 32W20 , 53C25 , 53C55

Keywords: energy classes , Monge–Ampère equations , negatively curved metric spaces , Sasaki manifolds

Rights: Copyright © 2023 Universitat Autònoma de Barcelona, Departament de Matemàtiques

Vol.67 • No. 1 • 2023
Back to Top