2022 Quasiconformal maps with thin dilatations
Christopher J. Bishop
Author Affiliations +
Publ. Mat. 66(2): 715-727 (2022). DOI: 10.5565/PUBLMAT6622207

Abstract

We give an estimate that quantifies the fact that a normalized quasiconformal map whose dilatation is non-zero only on a set of small area approximates the identity uniformly on the whole plane. The precise statement is motivated by applications of the author’s quasiconformal folding method for constructing entire functions; in particular an application to constructing transcendental wandering domains given by Fagella, Godillon, and Jarque [7].

Funding Statement

The author is partially supported by NSF grant DMS 1906259.

Citation

Download Citation

Christopher J. Bishop. "Quasiconformal maps with thin dilatations." Publ. Mat. 66 (2) 715 - 727, 2022. https://doi.org/10.5565/PUBLMAT6622207

Information

Received: 2 February 2021; Accepted: 12 August 2020; Published: 2022
First available in Project Euclid: 22 June 2022

MathSciNet: MR4443752
zbMATH: 1503.30050
Digital Object Identifier: 10.5565/PUBLMAT6622207

Subjects:
Primary: 30C62
Secondary: 37F30

Keywords: conformal modulus , holomorphic dynamics , Pompeiu’s formula , quasiconformal folding , quasiconformal maps

Rights: Copyright © 2022 Universitat Autònoma de Barcelona, Departament de Matemàtiques

Vol.66 • No. 2 • 2022
Back to Top