Open Access
Translator Disclaimer
2018 Stability of generalized linear Weingarten hypersurfaces immersed in the Euclidean space
Jonatan F. da Silva, Henrique F. de Lima, Marco Antonio L. Velásquez
Publ. Mat. 62(1): 95-111 (2018). DOI: 10.5565/PUBLMAT6211805


Given a positive function $F$ defined on the unit Euclidean sphere and satisfying a suitable convexity condition, we consider, for hypersurfaces $M^n$ immersed in the Euclidean space $\mathbb R^{n+1}$, the so-called $k$-th anisotropic mean curvatures $H_k^F$, $0\leq k\leq n$. For fixed $0\leq r\leq s\leq n$, a hypersurface $M^n$ of $\mathbb{R}^{n+1}$ is said to be $(r,s,F)$-linear Weingarten when its $k$-th anisotropic mean curvatures $H_k^F$, $r\leq k\leq s$, are linearly related. In this setting, we establish the concept of stability concerning closed $(r,s,F)$-linear Weingarten hypersurfaces immersed in $\mathbb R^{n+1}$ and, afterwards, we prove that such a hypersurface is stable if, and only if, up to translations and homotheties, it is the Wulff shape of $F$. For $r=s$ and $F\equiv1$, our results amount to the standard stability studied, for instance, by Alencar-do Carmo-Rosenberg [1].


Download Citation

Jonatan F. da Silva. Henrique F. de Lima. Marco Antonio L. Velásquez. "Stability of generalized linear Weingarten hypersurfaces immersed in the Euclidean space." Publ. Mat. 62 (1) 95 - 111, 2018.


Received: 5 April 2016; Revised: 6 October 2016; Published: 2018
First available in Project Euclid: 16 December 2017

zbMATH: 06848687
MathSciNet: MR3738184
Digital Object Identifier: 10.5565/PUBLMAT6211805

Primary: 53C42
Secondary: 53B25

Keywords: $(r, s, F)$-linear Weingarten hypersurfaces , $k$-th anisotropic mean curvatures , Euclidean space , stable closed hypersurfaces , Wulff shape

Rights: Copyright © 2018 Universitat Autònoma de Barcelona, Departament de Matemàtiques


Vol.62 • No. 1 • 2018
Back to Top