Open Access
2014 Outer billiard around a curvilinear triangle with a fixed diameter
Neil Dobbs, Tomasz Nowicki, Grzegorz Świrszcz
Publ. Mat. 58(S1): 179-194 (2014).


We consider an outer billiard around a Reulaux triangle. We prove the existence of infinitely many periodic points accumulating at infinity. To do so we con- struct a return map from a strip into itself and we study its properties. We also show some numerical simulations which, in particular, display heteroclinic intersections and Smale's horseshoes.


Download Citation

Neil Dobbs. Tomasz Nowicki. Grzegorz Świrszcz. "Outer billiard around a curvilinear triangle with a fixed diameter." Publ. Mat. 58 (S1) 179 - 194, 2014.


Published: 2014
First available in Project Euclid: 19 May 2014

zbMATH: 1347.37078
MathSciNet: MR3211833

Primary: 37E30 , 54H20‎

Keywords: dynamical system , homoclinic intersection , Outer billiard , periodic orbit , planar geometry , Smale's horseshoe

Rights: Copyright © 2014 Universitat Autònoma de Barcelona, Departament de Matemàtiques

Vol.58 • No. S1 • 2014
Back to Top