Translator Disclaimer
2013 Degree of the first integral of a pencil in $\mathbb{P}^2$ defined by Lins Neto
Liliana Puchuri Medina
Publ. Mat. 57(1): 123-137 (2013).

Abstract

Let $\mathcal{P}_4$ be the linear family of foliations of degree $4$ in $\mathbb{P}^2$ introduced by A. Lins Neto, whose set of parameter with first integral $I_p(\mathcal{P}_4)$ is dense and countable. In this work, we will compute explicitly the degree of the rational first integral of the foliations in this linear family, as a function of the parameter.

Citation

Download Citation

Liliana Puchuri Medina. "Degree of the first integral of a pencil in $\mathbb{P}^2$ defined by Lins Neto." Publ. Mat. 57 (1) 123 - 137, 2013.

Information

Published: 2013
First available in Project Euclid: 18 December 2012

zbMATH: 1281.32028
MathSciNet: MR3058930

Subjects:
Primary: 32S65, 34A26, 37F75

Rights: Copyright © 2013 Universitat Autònoma de Barcelona, Departament de Matemàtiques

JOURNAL ARTICLE
15 PAGES


SHARE
Vol.57 • No. 1 • 2013
Back to Top