Open Access
Translator Disclaimer
2012 Thompson's group $T$ is the orientation-preserving automorphism group of a cellular complex
Ariadna Fossas, Maxime Nguyen
Publ. Mat. 56(2): 305-326 (2012).

Abstract

We consider a planar surface $\Sigma$ of infinite type which has Thompson's group $\mathcal{T}$ as asymptotic mapping class group. We construct the asymptotic pants complex $\mathcal{C}$ of $\Sigma$ and prove that the group $\mathcal{T}$ acts transitively by automorphisms on it. Finally, we establish that the automorphism group of the complex $\mathcal{C}$ is an extension of the Thompson group $\mathcal{T}$ by $\mathbb{Z}/2\mathbb{Z}$

Citation

Download Citation

Ariadna Fossas. Maxime Nguyen. "Thompson's group $T$ is the orientation-preserving automorphism group of a cellular complex." Publ. Mat. 56 (2) 305 - 326, 2012.

Information

Published: 2012
First available in Project Euclid: 19 June 2012

zbMATH: 1292.57014
MathSciNet: MR2978326

Subjects:
Primary: 20F34 , 20F38 , 57M07 , 57N05

Keywords: flip complex , group actions , infinite type surfaces , mapping class groups , Thompson's groups

Rights: Copyright © 2012 Universitat Autònoma de Barcelona, Departament de Matemàtiques

JOURNAL ARTICLE
22 PAGES


SHARE
Vol.56 • No. 2 • 2012
Back to Top