Abstract
Suppose $N$ is a nice subgroup of the primary abelian group $G$ and $A=G/N$. The paper discusses various contexts in which $G$ satisfying some property implies that $A$ also satisfies the property, or visa versa, especially when $N$ is countable. For example, if $n$ is a positive integer, $G$ has length not exceeding $\omega_1$ and $N$ is countable, then $G$ is $n$-summable if $A$ is $n$-summable. When $A$ is separable and $N$ is countable, we discuss the condition that any such $G$ decomposes into the direct sum of a countable and a separable group, and we show that it is undecidable in ZFC whether this condition implies that $A$ must be a direct sum of cyclics. We also relate these considerations to the study of nice bases for primary abelian groups.
Citation
Peter V. Danchev. Patrick W. Keef. "Nice Elongations of Primary Abelian Groups." Publ. Mat. 54 (2) 317 - 339, 2010.
Information