Open Access
2007 Dynamics of symmetric holomorphic maps on projective spaces
Kohei Ueno
Publ. Mat. 51(2): 333-344 (2007).


We consider complex dynamics of a critically finite} holomorphic map from $\mathbf{P}^{k}$ to $\mathbf{P}^{k}$, which has symmetries associated with the symmetric group $S_{k+2}$ acting on $\mathbf{P}^{k}$, for each $k \ge 1$. The Fatou set of each map of this family consists of attractive basins of superattracting points. Each map of this family satisfies Axiom A.


Download Citation

Kohei Ueno. "Dynamics of symmetric holomorphic maps on projective spaces." Publ. Mat. 51 (2) 333 - 344, 2007.


Published: 2007
First available in Project Euclid: 31 July 2007

zbMATH: 1133.37320
MathSciNet: MR2334794

Primary: 37C80
Secondary: 37C80

Keywords: Axiom A , complex dynamics , equivariant map , Hyperbolicity , symmetry

Rights: Copyright © 2007 Universitat Autònoma de Barcelona, Departament de Matemàtiques

Vol.51 • No. 2 • 2007
Back to Top