Proc. Japan Acad. Ser. A Math. Sci. 98 (1), 7-12, (January 2022) DOI: 10.3792/pjaa.98.002
KEYWORDS: endomorphism, extremal ray, termination, divisorial contraction, flip, 14J15, 14J25, 14J30, 14J60, 32J17
Let $X$ be a normal $\mathbf{Q}$-factorial projective variety with at most log canonical singularities. We shall give a sufficient condition for the existence of at most finitely many $K_{X}$-negative extremal rays $R(\subset \overline{\mathrm{NE}}(X))$ of divisorial type. As an application, we show that for a nonisomorphic surjective endomorphism $f\colon X\to X$ of a normal projective $\mathbf{Q}$-factorial terminal 3-fold $X$ with $\kappa(X) > 0$, a suitable power $f^{k}\ (k > 0)$ of $f$ descends to a nonisomorphic surjective endomorphism $g\colon X_{\textit{min}}\to X_{\textit{min}}$ of a minimal model $X_{\textit{min}}$ of $X$.