Open Access
December 2019 Graph equivariant cohomological rigidity for GKM graphs
Matthias Franz, Hitoshi Yamanaka
Proc. Japan Acad. Ser. A Math. Sci. 95(10): 107-110 (December 2019). DOI: 10.3792/pjaa.95.107
Abstract

We formulate the notion of an isomorphism of GKM graphs. We then show that two GKM graphs have isomorphic graph equivariant cohomology algebras if and only if the graphs are isomorphic.

References

1.

M. Franz and V. Puppe, Exact cohomology sequences with integral coefficients for torus actions, Transform. Groups 12 (2007), no. 1, 65–76. MR2308029 1420.55016 10.1007/s00031-005-1127-0M. Franz and V. Puppe, Exact cohomology sequences with integral coefficients for torus actions, Transform. Groups 12 (2007), no. 1, 65–76. MR2308029 1420.55016 10.1007/s00031-005-1127-0

2.

M. Franz and V. Puppe, Exact sequences for equivariantly formal spaces, C. R. Math. Acad. Sci. Soc. R. Can. 33 (2011), no. 1, 1–10. MR2790824 1223.55003M. Franz and V. Puppe, Exact sequences for equivariantly formal spaces, C. R. Math. Acad. Sci. Soc. R. Can. 33 (2011), no. 1, 1–10. MR2790824 1223.55003

3.

M. Goresky, R. Kottwitz and R. MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998), no. 1, 25–83. MR1489894 0897.22009 10.1007/s002220050197M. Goresky, R. Kottwitz and R. MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998), no. 1, 25–83. MR1489894 0897.22009 10.1007/s002220050197

4.

V. Guillemin and C. Zara, Equivariant de Rham theory and graphs, Asian J. Math. 3 (1999), no. 1, 49–76. 0971.58001 10.4310/AJM.1999.v3.n1.a3V. Guillemin and C. Zara, Equivariant de Rham theory and graphs, Asian J. Math. 3 (1999), no. 1, 49–76. 0971.58001 10.4310/AJM.1999.v3.n1.a3

5.

H. Maeda, M. Masuda and T. Panov, Torus graphs and simplicial posets, Adv. Math. 212 (2007), no. 2, 458–483. 1119.55004 10.1016/j.aim.2006.10.011H. Maeda, M. Masuda and T. Panov, Torus graphs and simplicial posets, Adv. Math. 212 (2007), no. 2, 458–483. 1119.55004 10.1016/j.aim.2006.10.011

6.

M. Masuda, Equivariant cohomology distinguishes toric manifolds, Adv. Math. 218 (2008), no. 6, 2005–2012. 1152.57032 10.1016/j.aim.2008.04.002M. Masuda, Equivariant cohomology distinguishes toric manifolds, Adv. Math. 218 (2008), no. 6, 2005–2012. 1152.57032 10.1016/j.aim.2008.04.002

7.

M. Masuda and T. Panov, On the cohomology of torus manifolds, Osaka J. Math. 43 (2006), no. 3, 711–746. 1111.57019 euclid.ojm/1159190010M. Masuda and T. Panov, On the cohomology of torus manifolds, Osaka J. Math. 43 (2006), no. 3, 711–746. 1111.57019 euclid.ojm/1159190010
Copyright © 2019 The Japan Academy
Matthias Franz and Hitoshi Yamanaka "Graph equivariant cohomological rigidity for GKM graphs," Proceedings of the Japan Academy, Series A, Mathematical Sciences 95(10), 107-110, (December 2019). https://doi.org/10.3792/pjaa.95.107
Published: December 2019
Vol.95 • No. 10 • December 2019
Back to Top