Open Access
Translator Disclaimer
December 2018 The signs of the Stieltjes constants associated with the Dedekind zeta function
Sumaia Saad Eddin
Proc. Japan Acad. Ser. A Math. Sci. 94(10): 93-96 (December 2018). DOI: 10.3792/pjaa.94.93

Abstract

The Stieltjes constants $\gamma_{n}(K)$ of a number field $K$ are the coefficients of the Laurent expansion of the Dedekind zeta function $\zeta_{K}(s)$ at its pole $s=1$. In this paper, we establish a similar expression of $\gamma_{n}(K)$ as Stieltjes obtained in 1885 for $\gamma_{n}(\mathbf{Q})$. We also study the signs of $\gamma_{n}(K)$.

Citation

Download Citation

Sumaia Saad Eddin. "The signs of the Stieltjes constants associated with the Dedekind zeta function." Proc. Japan Acad. Ser. A Math. Sci. 94 (10) 93 - 96, December 2018. https://doi.org/10.3792/pjaa.94.93

Information

Published: December 2018
First available in Project Euclid: 26 November 2018

zbMATH: 07067285
MathSciNet: MR3879319
Digital Object Identifier: 10.3792/pjaa.94.93

Subjects:
Primary: 11R42
Secondary: 11M06

Rights: Copyright © 2018 The Japan Academy

JOURNAL ARTICLE
4 PAGES


SHARE
Vol.94 • No. 10 • December 2018
Back to Top