Open Access
April 2010 Binding numbers of fractional k-deleted graphs
Keiko Kotani
Proc. Japan Acad. Ser. A Math. Sci. 86(4): 85-88 (April 2010). DOI: 10.3792/pjaa.86.85

Abstract

Let k be an integer with $k \ge 2$. We show that if G be a graph such that $|G| > 4k+1 -4\sqrt {k-1}$ and $bind(G)> {(2k-1)(n-1) \over k(n-2)},$ then G is a fractional k-deleted graph. We also show that in the case where k is even, if G be a graph such that $|G| > 4k+1 -4\sqrt {k}$ and $bind(G)> {(2k-1)(n-1) \over k(n-2)+1},$ then G is a fractional k-deleted graph.

Citation

Download Citation

Keiko Kotani. "Binding numbers of fractional k-deleted graphs." Proc. Japan Acad. Ser. A Math. Sci. 86 (4) 85 - 88, April 2010. https://doi.org/10.3792/pjaa.86.85

Information

Published: April 2010
First available in Project Euclid: 1 April 2010

zbMATH: 1219.05141
MathSciNet: MR2657332
Digital Object Identifier: 10.3792/pjaa.86.85

Subjects:
Primary: 05C70

Keywords: binding number , fractional factor

Rights: Copyright © 2010 The Japan Academy

Vol.86 • No. 4 • April 2010
Back to Top