Open Access
November 2009 On the cohomology of the mod p Steenrod algebra
Xiugui Liu, He Wang
Proc. Japan Acad. Ser. A Math. Sci. 85(9): 143-148 (November 2009). DOI: 10.3792/pjaa.85.143


Let p be an odd prime greater than seven and A the mod p Steenrod algebra. In this paper we prove that in the cohomology of A the product $h_1 h_n \tilde \delta _{s + 4}\in {\rm Ext}_A^{s + 6, t(s,n) + s} ({\bf Z}_p , {\bf Z}_p)$ is nontrivial for $n \geq 5$, and trivial for $n=3, 4$, where $ \tilde \delta _{s + 4}$ is actually $\tilde \alpha _{s+4}^{(4)}$ described by X. Wang and Q. Zheng, $0 \leq s < p - 4$, $t(s,n) = 2(p-1)[(s + 1) + (s + 3)p + (s + 3)p^2 + (s + 4)p^3 + p^n ].$ We show our results by explicit combinatorial analysis of the (modified) May spectral sequence. The method of proof is very elementary.


Download Citation

Xiugui Liu. He Wang. "On the cohomology of the mod p Steenrod algebra." Proc. Japan Acad. Ser. A Math. Sci. 85 (9) 143 - 148, November 2009.


Published: November 2009
First available in Project Euclid: 5 November 2009

zbMATH: 1186.55008
MathSciNet: MR2573964
Digital Object Identifier: 10.3792/pjaa.85.143

Primary: 55S10
Secondary: 55T15

Keywords: Adams spectral sequence , Cohomology , May spectral sequence , Steenrod algebra

Rights: Copyright © 2009 The Japan Academy

Vol.85 • No. 9 • November 2009
Back to Top