Open Access
January 2009 Dynamics of gradient flows in the half-transversal Morse theory
Hiroshi Goda, Andrei V. Pajitnov
Proc. Japan Acad. Ser. A Math. Sci. 85(1): 6-10 (January 2009). DOI: 10.3792/pjaa.85.6
Abstract

In this note we suggest a construction of the Morse-Novikov theory for a class of non-transversal gradients and generalize to this class the basic results of the classical Morse-Novikov theory including its non-abelian version.

References

1.

S. K. Donaldson, Topological field theories and formulae of Casson and Meng-Taubes, in Proceedings of the Kirbyfest (Berkeley, CA, 1998), 87–102 (electronic), Geom. Topol. Publ., Coventry. MR1734402S. K. Donaldson, Topological field theories and formulae of Casson and Meng-Taubes, in Proceedings of the Kirbyfest (Berkeley, CA, 1998), 87–102 (electronic), Geom. Topol. Publ., Coventry. MR1734402

2.

H. Goda, Heegaard splitting for sutured manifolds and Murasugi sum, Osaka J. Math. 29 (1992), no. 1, 21–40. MR1153177 euclid.ojm/1200783640 H. Goda, Heegaard splitting for sutured manifolds and Murasugi sum, Osaka J. Math. 29 (1992), no. 1, 21–40. MR1153177 euclid.ojm/1200783640

3.

H. Goda, On handle number of Seifert surfaces in $S^{3}$, Osaka J. Math. 30 (1993), no. 1, 63–80. MR1200821 euclid.ojm/1200784260 H. Goda, On handle number of Seifert surfaces in $S^{3}$, Osaka J. Math. 30 (1993), no. 1, 63–80. MR1200821 euclid.ojm/1200784260

4.

H. Goda, H. Matsuda, A. V. Pajitnov, Morse-Novikov theory, Heegaard splittings and closed orbits of gradient flows, arXiv:0709.3153. 0709.3153H. Goda, H. Matsuda, A. V. Pajitnov, Morse-Novikov theory, Heegaard splittings and closed orbits of gradient flows, arXiv:0709.3153. 0709.3153

5.

H. Goda and A. V. Pajitnov, Twisted Novikov homology and circle-valued Morse theory for knots and links, Osaka J. Math. 42 (2005), no. 3, 557–572. MR2166722 euclid.ojm/1153494502 H. Goda and A. V. Pajitnov, Twisted Novikov homology and circle-valued Morse theory for knots and links, Osaka J. Math. 42 (2005), no. 3, 557–572. MR2166722 euclid.ojm/1153494502

6.

M. Hutchings and Y.-J. Lee, Circle-valued Morse theory and Reidemeister torsion, Geom. Topol. 3 (1999), 369–396. (electronic). MR1716272 10.2140/gt.1999.3.369M. Hutchings and Y.-J. Lee, Circle-valued Morse theory and Reidemeister torsion, Geom. Topol. 3 (1999), 369–396. (electronic). MR1716272 10.2140/gt.1999.3.369

7.

B. J. Jiang and S. C. Wang, Twisted topological invariants associated with representations, in Topics in knot theory (Erzurum, 1992), 211–227, Kluwer Acad. Publ., Dordrecht. MR1257911 10.1007/978-94-011-1695-4_11B. J. Jiang and S. C. Wang, Twisted topological invariants associated with representations, in Topics in knot theory (Erzurum, 1992), 211–227, Kluwer Acad. Publ., Dordrecht. MR1257911 10.1007/978-94-011-1695-4_11

8.

F. Latour, Existence de 1-formes fermées non singulières dans une classe de cohomologie de de Rham, Inst. Hautes Études Sci. Publ. Math. No. 80 (1994), 135–194 (1995). MR1320607 10.1007/BF02698899F. Latour, Existence de 1-formes fermées non singulières dans une classe de cohomologie de de Rham, Inst. Hautes Études Sci. Publ. Math. No. 80 (1994), 135–194 (1995). MR1320607 10.1007/BF02698899

9.

T. Mark, Torsion, TQFT, and Seiberg-Witten invariants of 3-manifolds, Geom. Topol. 6 (2002), 27–58. (electronic). MR1885588 10.2140/gt.2002.6.27T. Mark, Torsion, TQFT, and Seiberg-Witten invariants of 3-manifolds, Geom. Topol. 6 (2002), 27–58. (electronic). MR1885588 10.2140/gt.2002.6.27

10.

G. Meng and C. H. Taubes, SW = Milnor torsion, Math. Res. Lett. 3 (1996), no. 5, 661–674. MR1418579 10.4310/MRL.1996.v3.n5.a8G. Meng and C. H. Taubes, SW = Milnor torsion, Math. Res. Lett. 3 (1996), no. 5, 661–674. MR1418579 10.4310/MRL.1996.v3.n5.a8

11.

J. W. Milnor, Infinite cyclic coverings, in Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967), 115–133, Prindle, Weber & Schmidt, Boston, Mass. MR242163J. W. Milnor, Infinite cyclic coverings, in Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967), 115–133, Prindle, Weber & Schmidt, Boston, Mass. MR242163

12.

A. V. Pazhitnov, On the Novikov complex for rational Morse forms, Ann. Fac. Sci. Toulouse Math. (6) 4 (1995), no. 2, 297–338. MR1344724 10.5802/afst.798A. V. Pazhitnov, On the Novikov complex for rational Morse forms, Ann. Fac. Sci. Toulouse Math. (6) 4 (1995), no. 2, 297–338. MR1344724 10.5802/afst.798

13.

A. V. Pazhitnov, Simple homotopy type of Novikov complex and $\zeta$-function of the gradient flow, Uspekhi Mat. Nauk 54 (1999), no. 1(325), 117–170; translation in Russian Math. Surveys 54 (1999), no. 1, 119–169. MR1706835 10.4213/rm118A. V. Pazhitnov, Simple homotopy type of Novikov complex and $\zeta$-function of the gradient flow, Uspekhi Mat. Nauk 54 (1999), no. 1(325), 117–170; translation in Russian Math. Surveys 54 (1999), no. 1, 119–169. MR1706835 10.4213/rm118

14.

A. V. Pazhitnov, On closed orbits of gradient flows of circle-valued mappings, Algebra i Analiz 14 (2002), no. 3, 186–240; translation in St. Petersburg Math. J. 14 (2003), no. 3, 499–534. MR1921994A. V. Pazhitnov, On closed orbits of gradient flows of circle-valued mappings, Algebra i Analiz 14 (2002), no. 3, 186–240; translation in St. Petersburg Math. J. 14 (2003), no. 3, 499–534. MR1921994

15.

A. V. Pajitnov, Circle-valued Morse theory, de Gruyter, Berlin, 2006. MR2319639A. V. Pajitnov, Circle-valued Morse theory, de Gruyter, Berlin, 2006. MR2319639

16.

E. Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994), no. 6, 769–796. MR1306021 10.4310/MRL.1994.v1.n6.a13E. Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994), no. 6, 769–796. MR1306021 10.4310/MRL.1994.v1.n6.a13
Copyright © 2009 The Japan Academy
Hiroshi Goda and Andrei V. Pajitnov "Dynamics of gradient flows in the half-transversal Morse theory," Proceedings of the Japan Academy, Series A, Mathematical Sciences 85(1), 6-10, (January 2009). https://doi.org/10.3792/pjaa.85.6
Published: January 2009
Vol.85 • No. 1 • January 2009
Back to Top