Translator Disclaimer
October 2008 The number of modular extensions of odd degree of a local field
Masakazu Yamagishi
Proc. Japan Acad. Ser. A Math. Sci. 84(8): 151-153 (October 2008). DOI: 10.3792/pjaa.84.151

Abstract

The number of Galois extensions, up to isomorphism, of a local field whose Galois groups are isomorphic to the modular group $M_{p^{m}}=\langle x,y\mid x^{p^{m-1}}=y^{p}=1,y^{-1}xy=x^{p^{m-2}+1}\rangle$, where $p$ is an odd prime, is counted.

Citation

Download Citation

Masakazu Yamagishi. "The number of modular extensions of odd degree of a local field." Proc. Japan Acad. Ser. A Math. Sci. 84 (8) 151 - 153, October 2008. https://doi.org/10.3792/pjaa.84.151

Information

Published: October 2008
First available in Project Euclid: 6 October 2008

zbMATH: 1225.11154
MathSciNet: MR2457804
Digital Object Identifier: 10.3792/pjaa.84.151

Subjects:
Primary: 11S20

Rights: Copyright © 2008 The Japan Academy

JOURNAL ARTICLE
3 PAGES


SHARE
Vol.84 • No. 8 • October 2008
Back to Top