Open Access
March 2007 On the distribution of points on multidimensional modular hyperbolas
Igor E. Shparlinski
Proc. Japan Acad. Ser. A Math. Sci. 83(2): 5-9 (March 2007). DOI: 10.3792/pjaa.83.5

Abstract

We study the distribution of points on the $(n+1)$-dimensional modular hyperbola $a_1\cdots a_{n+1} \equiv c \pmod q$, where $q$ and $c$ are relatively prime integers. In particular, we show that an elementary argument leads to a straight-forward proof of a recent result of T.~Zhang and W.~Zhang, with a stronger error term. We also use character sums to obtain an asymptotic formula for the number of points in a given box that lie on such hyperbolas.

Citation

Download Citation

Igor E. Shparlinski. "On the distribution of points on multidimensional modular hyperbolas." Proc. Japan Acad. Ser. A Math. Sci. 83 (2) 5 - 9, March 2007. https://doi.org/10.3792/pjaa.83.5

Information

Published: March 2007
First available in Project Euclid: 5 March 2007

zbMATH: 1123.11026
MathSciNet: MR2303621
Digital Object Identifier: 10.3792/pjaa.83.5

Subjects:
Primary: 11A07 , 11K38 , 11L40

Keywords: Multidimensional modular hyperbola , uniform distribution

Rights: Copyright © 2007 The Japan Academy

Vol.83 • No. 2 • March 2007
Back to Top