Open Access
Jan. 2001 On boundedness of a function on a Zalcman domain
Yasuyuki Kobayashi
Proc. Japan Acad. Ser. A Math. Sci. 77(1): 22-24 (Jan. 2001). DOI: 10.3792/pjaa.77.22

Abstract

We consider boundedness of a function defined by an infinite product which is used to study a uniqueness theorem on a plane domain and the point separation problem of a two-sheeted covering Riemann surface. We show that there is such an infinite product that it converges but the function defined by it is not bounded on arbitrary Zalcman domain.

Citation

Download Citation

Yasuyuki Kobayashi. "On boundedness of a function on a Zalcman domain." Proc. Japan Acad. Ser. A Math. Sci. 77 (1) 22 - 24, Jan. 2001. https://doi.org/10.3792/pjaa.77.22

Information

Published: Jan. 2001
First available in Project Euclid: 23 May 2006

zbMATH: 0969.30016
MathSciNet: MR1812744
Digital Object Identifier: 10.3792/pjaa.77.22

Subjects:
Primary: 30D50

Keywords: bounded analytic function , Uniqueness theorem , Zalcman domain

Rights: Copyright © 2001 The Japan Academy

Vol.77 • No. 1 • Jan. 2001
Back to Top