Open Access
June 1999 An upper bound for the number of solutions of the exponential diophantine equation $a^x + b^y = c^z$
Maohua Le
Proc. Japan Acad. Ser. A Math. Sci. 75(6): 90-91 (June 1999). DOI: 10.3792/pjaa.75.90

Abstract

Let $a$, $b$, $c$ be coprime positive integers which are power free. In this paper we prove that if $2\nmid c$, then the equation $a^x + b^y = c^z$ has at most $2^{\omega(c)+1}$ positive integer solutions $(x,y,z)$, where $\omega(c)$ is the number of distinct prime factors of $c$. Moreover, all solutions $(x,y,z)$ satisfy $z < 2ab \log(2eab) / \pi$.

Citation

Download Citation

Maohua Le. "An upper bound for the number of solutions of the exponential diophantine equation $a^x + b^y = c^z$." Proc. Japan Acad. Ser. A Math. Sci. 75 (6) 90 - 91, June 1999. https://doi.org/10.3792/pjaa.75.90

Information

Published: June 1999
First available in Project Euclid: 23 May 2006

zbMATH: 0939.11018
MathSciNet: MR1712652
Digital Object Identifier: 10.3792/pjaa.75.90

Subjects:
Primary: 11D61

Keywords: exponential Diophantine equation , the number of solutions , upper bound

Rights: Copyright © 1999 The Japan Academy

Vol.75 • No. 6 • June 1999
Back to Top