Open Access
November 2024 Wolstenholme primes and group determinants of cyclic groups
Cid Reyes-Bustos, Naoya Yamaguchi, Yuka Yamaguchi
Proc. Japan Acad. Ser. A Math. Sci. 100(9): 51-55 (November 2024). DOI: 10.3792/pjaa.100.011

Abstract

A Wolstenholme prime is a prime number $p \geq 5$ that divides the numerator of the Bernoulli number $B_{p-3}$. A number of equivalent definitions for Wolstenholme primes are known, mainly related to congruences of harmonic sums or binomial coefficients. In this paper, we introduce an equivalent definition of Wolstelholme primes related to the number of terms in the group determinant of cyclic groups, and equivalently, the cardinality of certain sets of restricted partitions.

Citation

Download Citation

Cid Reyes-Bustos. Naoya Yamaguchi. Yuka Yamaguchi. "Wolstenholme primes and group determinants of cyclic groups." Proc. Japan Acad. Ser. A Math. Sci. 100 (9) 51 - 55, November 2024. https://doi.org/10.3792/pjaa.100.011

Information

Published: November 2024
First available in Project Euclid: 31 October 2024

Digital Object Identifier: 10.3792/pjaa.100.011

Subjects:
Primary: 11A41
Secondary: 11C20 , 20C15 , 65F40

Keywords: circulant determinant , cyclic group , group determinant , restricted partition , Wolstenholme prime

Rights: Copyright © 2024 The Japan Academy

Vol.100 • No. 9 • November 2024
Back to Top